O8	$0.390(1)$	$0.037(1)$	$0.3283(3)$	$0.010(1)$
O9	$0.2603(9)$	$0.255(1)$	$0.4180(4)$	$0.011(1)$
O10	$-0.037(1)$	$-0.040(1)$	$0.4001(4)$	$0.016(2)$

Table 2. Selected geometric parameters (\AA)

Eul-OI'	2.507 (8)	Eu3-O4	2.583 (9)
Eul-O3	2.622 (9)	Eu3-O5 ${ }^{\text {vii }}$	2.301 (9)
Eul-O6	2.423 (9)	Eu3-O5 ${ }^{\text {a }}$	2.379 (9)
Eul-O7	2.670 (9)	Eu3-O6"	2.375 (9)
Eul-O7 ${ }^{\text {² }}$	2.384 (9)	Eu3-O8	2.572 (8)
Eul-O8	2.667 (9)	Eu3-O9	2.385 (9)
Eul-O8 ${ }^{\text {in }}$	2.521 (9)	Eu3-O10 ${ }^{\text {ii1 }}$	2.39 (1)
Eul-O9	2.298 (8)	$\mathrm{Sil}-\mathrm{O} 2$	1.639 (9)
Eu1-O10	2.69 (1)	$\mathrm{Sil}-\mathrm{O}^{\text {vui }}$	1.648 (9)
$\mathrm{Eu} 2-\mathrm{Ol}{ }^{\text {iv }}$	2.409 (8)	Sil-O6	1.620 (9)
$\mathrm{Eu} 2-\mathrm{Ol}{ }^{2}$	2.372 (8)	Sil-O10	1.60 (1)
$\mathrm{Eu} 2-\mathrm{O} 2^{\text {+i }}$	2.35 (1)	$\mathrm{Si} 2-\mathrm{O} 1$	1.649 (8)
$\mathrm{Eu} 2-\mathrm{O} 2^{\text {ii }}$	2.49 (1)	$\mathrm{Si} 2-\mathrm{O3}^{*}$	1.633 (9)
$\mathrm{Eu} 2-\mathrm{O} 3^{\text {iv }}$	2.292 (9)	$\mathrm{Si} 2-07$	1.62 (1)
$\mathrm{Eu} 2-\mathrm{O} 3^{\text {v }}$	2.575 (9)	Si2-08	1.612 (9)
Eu2-O6"	2.539 (8)	B-O4	1.43 (1)
Eu2-O7"	2.576 (9)	B-O5	1.36 (1)
$\mathrm{Eu} 2-\mathrm{O} 10^{\text {v1 }}$	2.94 (1)	$\mathrm{B}-\mathrm{O} 9$	1.34 (1)
Eu3-O22 ${ }^{\text {vi }}$	2.435 (9)		

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-$ $x, \frac{1}{2}+y, z$; (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (v) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (vi) $1+x, y, z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z ;(\text { viii })^{2} x-\frac{1}{2}, \frac{1}{2}-y, 1-z$.

The five highest peaks in the residual electron density are all less that $0.75 \AA$ from a rare earth ion.

Data collection: CAD-4 software (Enraf-Nonius, 1977). Cell refinement: CAD-4 software. Data reduction: MolEN (Lorentzpolarization) (Fair, 1990). Program(s) used to solve structure: MolEN (Patterson). Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: GCIF, local program.

The work was supported by the National Natural Science Foundation of China.

[^0]
References

Antic-Fidancev, E. (1994). J. Phys. Condens. Matter, 6, 6857-6864. Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jsaryuk, V. I., Dzhurinskii, B. F., Zolin, V. F., Lysanova, G. V., Komova, M. G. \& Savchenko, V. D. (1991). Izv. Akad. Nauk. SSSR Neorg. Mater. 27, 68. (In Russian.)
Liebau, F. (1985). Structural Chemistry of Silicates, Structure, Bonding and Classification. Berlin/New York: Springer-Verlag.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ruimont, A. \& Tarte, P. (1988). J. Solid State Chem. 75, 244-250.
Serhan, K., Taibi, M., Aride, J., Boukhari, A., Darriet, J. \& Le Flem, G. (1994). J. Solid State Chem. 110, 384-388.

Voronkov, A. A. \& Pyatenko, Y. A. (1967). Sov. Phys. Crystallogr. 12, 214-221.

Acta Cryst. (1996). C52, 2387-2389

$\mathbf{K G a A s}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}$

Kuan-Jiuh Lin and Kwang-Hwa Lii
Institute of Chemistry, Academia Sinica, Taipei, Taiwan. E-mail: kjlin@chem.sinica.edu.tw

(Received 20 September 1995; accepted 19 April 1996)

Abstract

Potassium gallium diarsenate($4-$), $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$, has been synthesized from a flux and structurally characterized by single-crystal X-ray diffraction. It is isostructural with $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$ [Boughzala \& Jouini (1995). Acta Cryst. C51, 179-181] and $\mathrm{RbAlAs}_{2} \mathrm{O}_{7}$ [Boughzala, Driss \& Jouini (1993). Acta Cryst. C49, 425-427].

Comment

Aluminophosphates have been extensively studied because they are known to be useful materials for catalysis and adsorption (Wilson, Lok, Messing, Cannan \& Flanigen, 1982). The replacement of aluminium by gallium has yielded both novel structure types and phases that are analogous to known aluminophosphates and aluminosilicates. In contrast, few galloarsenates have been reported. There are only two structurally characterized galloarsenates in the literature, namely, GaAsO_{4} (Goiffon, Jumas, Maurin \& Philippot, 1986) and $\mathrm{Ga}_{6}\left(\mathrm{AsO}_{4}\right)_{6}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}\right)_{4}(\mathrm{HF})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Chen, Li, Yang \& $\mathrm{Xu}, 1989$). In this paper, we describe the synthesis and crystal structure of a potassium gallium arsenate, $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$.

The structure contains intersecting tunnels with the K^{+}cations located at the tunnel intersections. A polyhedral view of the structure along the c axis is shown in Fig. 1. The shortest $\mathrm{O} \cdots \mathrm{O}$ distance across the window of the tunnel along the c axis is $5.3 \AA$, which is only slightly larger than the corresponding distance in $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$ (Boughzala \& Jouini, 1995). The framework is composed of GaO_{6} octahedra joined through $\mathrm{As}_{2} \mathrm{O}_{7}$ diarsenate groups by corner sharing. The atom labeling of the asymmetric unit is shown in Fig. 2.

All of the GaO_{6} octahedra are regular $[\mathrm{Ga}-\mathrm{O}$ $1.936(4)-2.002(4) \AA, \quad \mathrm{O}-\mathrm{Ga}-\mathrm{O} 87.4(1)-93.0(2)^{\circ} \mathrm{J}$. The AsO_{4} tetrahedra of the $\mathrm{As}_{2} \mathrm{O}_{7}$ group are in a staggered configuration. The mean bridging and terminal As- O bond lengths are 1.760 (4) and 1.664 (4) \AA, respectively, and the As-O-As angle is 119.1 (2) ${ }^{\circ}$. These values are comparable with 1.764 (4), $1.660 \AA$ and $118.3(2)^{\circ}$ for $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$.
The two crystallographically distinct K1 and K2 cations in $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$ lie on inversion centers. The coordination numbers of the K^{+}ions were determined on
the basis of the maximum gap in the $\mathrm{K}-\mathrm{O}$ distance ranked in increasing order. The maximum $\mathrm{K}-\mathrm{O}$ distance agrees with the $3.35 \AA$ cut-off of Donnay \& Allmann (1970). Atoms K1 and K2 are therefore ten- and eight-coordinated, respectively. The $\mathrm{K} 1-\mathrm{O}$ distances, 2.841 (4)-3.206 (4) \AA, are similar to those in $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$. The longest $\mathrm{K} 2-\mathrm{O}$ bond distance in $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$ is 3.346 (4) A, which is a little longer than the corresponding distance in the Al analogue $[3.201(5) \AA]$. Bond

Fig. 1. A polyhedral representation of the $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$ structure viewed along the c axis. In this representation, the corners of the octahedra and tetrahedra are O atoms and the Ga and As atoms are at the center of each octahedron and tetrahedron, respectively. Black circles are K1 atoms; open circles are K2 atoms.

Fig. 2. An ORTEPII (Johnson, 1976) plot of the asymmetric Ga,As, O unit with 50% probability displacement ellipsoids. Symmetry codes: (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, y-1, z$; (v) $-x,-y, 1-z$.
valence sums for K1 and K2 are 1.16 and 0.96 , respectively. The relatively high bond valence sum for K 1 indicates that it is more tightly bound, and therefore its displacement parameters are smaller than those of $\mathrm{K} 2\left[U_{\mathrm{eq}}(\mathrm{K} 2)\right.$ is twice as large as $\left.U_{\mathrm{eq}}(\mathrm{K} 1)\right]$.

Experimental

$\mathrm{KH}_{2} \mathrm{AsO}_{4}$ (s) and $\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{AsO}_{4}$ (s) were prepared from a solution of arsenic acid with potassium hydroxide and ammonium hydroxide, respectively. $0.6735 \mathrm{~g} \mathrm{KH}_{2} \mathrm{AsO}_{4}, 0.4433 \mathrm{~g}$ $\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{AsO}_{4}$ and $0.1847 \mathrm{~g} \mathrm{Ga}_{2} \mathrm{O}_{3}$ were thoroughly mixed in a 15 ml platinum crucible. The mixture was heated at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 773 K , maintained at 773 K for 6 h , heated to 973 K , maintained at 973 K for 10 h , cooled at $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 773 K and quenched to room temperature by removing the crucible from the furnace. The flux was dissolved with hot water and the solid product was obtained by suction filtration. The product contained colorless chunk-shaped crystals of $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$ and a small amount of GaAsO_{4}, as indicated by X-ray analysis using a Rigaku powder diffractometer with filtered Cu radiation. The intensity of the strongest reflection of the impurity phase $\mathrm{GaAsO}_{4}\left(2 \theta=25.94^{\circ}\right)$ was about a tenth that of the strongest reflection of the major phase and all other observed reflections in the diffraction pattern corresponded very well with those calculated from the single-crystal data.

Crystal data

$\mathrm{KGaAs}_{2} \mathrm{O}_{7}$
$M_{r}=370.65$
Triclinic
$P \overline{1}$
$a=6.271$ (1) \AA
$b=6.376(1) \AA$
$c=8.169(1) \AA$
$\alpha=96.45(1)^{\circ}$
$\beta=103.86(1)^{\circ}$
$\gamma=103.87(1)^{\circ}$
$V=302.84$ (8) \AA^{3}
$Z=2$
$D_{x}=4.065 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.451, T_{\text {max }}=$ 0.998

2068 measured reflections
1752 independent reflections

Refinement

Refinement on F
$R=0.033$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=10.30-18.20^{\circ}$
$\mu=16.03 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Chunk
$0.30 \times 0.20 \times 0.13 \mathrm{~mm}$
Colorless

1571 observed reflections
$\left[I_{\text {net }}>2.5 \sigma\left(I_{\text {net }}\right)\right]$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=29.89^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 8$
$l=-11 \rightarrow 11$
3 standard reflections frequency: 60 min intensity decay: 2.5%

Extinction correction:
 Larson (1970)

$w R=0.041$
$S=2.43$
1571 reflections
104 parameters
$w=1 /\left[\sigma^{2}(F)+0.0001 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.73 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.13 \mathrm{e}^{\AA^{-3}}$

Extinction coefficient: 25936 (709)
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
KI	0	$1 / 2$	$1 / 2$	0.036 (1)
K2	0	1/2	0	0.071 (2)
Ga	0.37526 (9)	0.19236 (8)	0.72415 (6)	0.0122 (3)
Asl	0.17389 (8)	0.96533 (8)	0.30932 (6)	0.0121 (2)
As2	-0.48212 (8)	0.25386 (7)	0.16579 (6)	0.0119 (3)
Ol	-0.0908 (6)	0.8039 (6)	0.2183 (4)	0.016 (2)
O 2	0.3361 (6)	0.7913 (6)	0.3308 (5)	0.017 (2)
O3	0.2068 (6)	1.1509 (6)	0.4786 (4)	0.015 (2)
O4	0.2337 (6)	1.1146 (6)	0.1486 (4)	0.017 (2)
OS	0.4469 (7)	0.7384 (6)	0.0285 (4)	0.018 (2)
O6	-0.4286 (7)	0.4979 (6)	0.2852 (5)	0.019 (2)
07	-0.3102 (7)	0.1238 (6)	0.2775 (5)	0.017 (2)

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: KH1086). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Boughzala, H., Driss, A. \& Jouini, T. (1993). Acta Cryst. C49, 425427.

Boughzala, H. \& Jouini, T. (1995). Acta Cryst. C51, 179-181.
Chen, J., Li, L., Yang, G. \& Xu, R. (1989). J. Chem. Soc. Chem. Commun. pp. 1217-1218.
Donnay, G. \& Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Goiffon, A., Jumas, J. C., Maurin, M. \& Philippot, E. (1986). J. Solid State Chem. 61, 384-396.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Wilson, S. T., Lok, B. M., Messing, C. A., Cannan, T. R. \& Flanigen, E. M. (1982). J. Am. Chem. Soc. 104, 1146-1147.

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

K1-O1	3.206 (4)	$\mathrm{Ga}-\mathrm{Os}^{\text {ii] }}$	2.002 (4)
$\mathrm{K} 1-\mathrm{O} 2$	3.146 (4)	$\mathrm{Ga}-\mathrm{Ob}^{\text {i }}$	1.936 (4)
$\mathrm{K} 1-\mathrm{O}^{\text {i }}$	2.841 (4)	$\mathrm{Ga}-\mathrm{O}^{\text {iv }}$	1.956 (4)
K1-06	2.832 (4)	Ast-O1	1.669 (3)
K1-07	2.816 (4)	Asl-02	1.672 (4)
K2-01	2.738 (4)	Asi-03	1.654 (3)
$\mathrm{K} 2-\mathrm{O} 2$	3.076 (4)	Asl-O4	1.765 (3)
K2-05	2.790 (4)	As2- $\mathrm{O4}^{\text {v }}$	1.754 (4)
K2-06	3.346 (4)	As2-05 ${ }^{\text {vi }}$	1.658 (3)
$\mathrm{Ga}-\mathrm{Ol}^{\text {i }}$	1.955 (4)	As2-06	1.654 (4)
$\mathrm{Ga}-\mathrm{O} 2^{\text {iii }}$	1.949 (4)	As2-07	1.676 (4)
$\mathrm{Ga}-\mathrm{O3}^{\prime}$	1.985 (3)		
$\mathrm{Ol}^{1 i}-\mathrm{Ga}-\mathrm{OO}^{\text {iii }}$	176.4 (2)	$\mathrm{O6} 6^{\text {"--Ga--O7 }}$	177.2 (2)
$\mathrm{Ol}^{1 i}-\mathrm{Ga}-3^{\text {l }}$	88.4 (2)	Ol-As1-02	104.3 (2)
	92.0 (2)	O1-Asl-03	116.3 (2)
$\mathrm{Ol}^{1 i}-\mathrm{Ga}-\mathrm{Ob}^{\text {ii }}$	88.7 (2)	Ol - $\mathrm{As} 1-\mathrm{O} 4$	103.4 (2)
$\mathrm{Olii}-\mathrm{Ga}-\mathrm{Ol}^{\text {² }}$	90.6 (2)	O2-Asl-03	117.8 (2)
$\mathrm{O} 2^{\text {Iii }}-\mathrm{Ga}-3^{\text {i }}$	92.0 (2)	O2-Asl-O4	108.1 (2)
O2iii-Ga-O5iii	87.4 (2)	O3-Asl-O4	105.9 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ga}-\mathrm{O}^{\text {ii }}$	87.7 (2)	O4*-As $2-05{ }^{\text {¹ }}$	109.6 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O}^{\text {iv }}$	93.0 (2)	$\mathrm{O4} 4$ - As $2-\mathrm{O} 6$	106.6 (2)
$\mathrm{O3}^{\mathbf{i}}$-Ga-O51i	175.1 (2)	$\mathrm{O4}^{\text {v }}$ - $\mathrm{As} 2-07$	108.5 (2)
$\mathrm{O3}^{\prime}-\mathrm{Ga}-\mathrm{Ob}^{\prime \prime}$	84.3 (2)	O5'ㄴ-As2-06	114.5 (2)
$\mathrm{O}^{\text {i }}$ - $\mathrm{Ga}-\mathrm{O}^{\text {iv }}$	93.0 (2)	O5 $5^{\text {vi }}$-As2--07	111.3 (2)
$\mathrm{O} 5^{\text {iii }}$ - $\mathrm{Ga}-\mathrm{O} 6^{\text {" }}$	90.9 (2)	O6-As2-07	106.1 (2)
OSiil--Ga-O7 ${ }^{\text {iv }}$	91.9 (2)	As1-O4-As2 ${ }^{\text {vii }}$	119.1 (2)

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-y, 1-z$; (iv) $-x,-y, 1-z$; (v) $x-1, y-1, z$; (vi) $-x, 1-y,-z$; (vii) $1+x, 1+y, z$.

Data collection: NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Cell refinement: NRCVAX. Data reduction: NRCVAX. Program(s) used to solve structure: NRCVAX. Program(s) used to refine structure: NRCVAX. Molecular graphics: NRCVAX and ORTEPII (Johnson, 1976).

This work was supported by Institute of Chemistry, Academia Sinica and the National Science Council (NSC85-2113-M-001-017) of the Republic of China.

Acta Cryst. (1996). C52, 2389-2393

$\mathrm{LaMo}_{8} \mathrm{O}_{14}$

G. Kerihuel, J. Torteler and P. Gougeon

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 1495, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France. E-mail: patrick.gougeon@univ-rennesl.fr
(Received 16 January 1996; accepted 25 April 1996)

Abstract

The crystal structure of lanthanum octamolybdate contains an equal mixture of cis-edge-sharing and trans bi-face-capped octahedral Mo_{8} clusters. These clusters and the O atoms, the arrangement of which derives from close packing with the layer sequence $A B A C \ldots$, form sheets parallel to the ($b c$) plane of the orthorhombic unit cell. The Mo-Mo distances range from 2.5877 (4) to 2.7780 (5) \AA and from 2.5961 (5) to 2.8866 (7) \AA in the trans and cis-edge-sharing isomeric clusters, respectively. The shortest Mo-Mo distance between the Mo_{8} clusters within the same layer is 3.0807 (4) \AA and that between clusters in adjacent layers is 3.6380 (5) \AA. The Mo-O distances lie between 2.026 (3) and 2.120 (3) \AA in the trans isomer and between 1.938 (3) and 2.169 (3) \AA in the cis-edge-sharing

[^0]: Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1155). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

